
Parallel 2D Graded Guaranteed Quality
Delaunay Mesh Refinement

Andrey N. Chernikov1 and Nikos P. Chrisochoides1,2,3

1Department of Computer Science 2Department of Mechanical Engineering, MIT
College of William and Mary Boston, MA 02139, USA
McGlothlin-Street Hall 3Department of Radiology
Williamsburg, VA 23185, USA Harvard Medical School
{ancher,nikos}@cs.wm.edu Boston, MA 02115, USA

Summary. We develop a theoretical framework for constructing guaranteed qual-
ity Delaunay meshes in parallel for general two-dimensional geometries. This paper
presents a new approach for constructing graded meshes, i.e., meshes with element
size controlled by a user-defined criterion. The sequential Delaunay refinement algo-
rithms are based on inserting points at the circumcenters of triangles of poor quality
or unacceptable size. We call two points Delaunay-independent if they can be in-
serted concurrently without destroying the conformity and Delaunay properties of
the mesh. The contribution of this paper is three-fold. First, we present a number
of local conditions of point Delaunay-independence, which do not rely on any global
mesh metrics. Our sufficient conditions of point Delaunay-independence allow to
select points for concurrent insertion in such a way that the standard sequential
guaranteed quality Delaunay refinement procedures can be applied in parallel to
attain the required element quality constraints. Second, we prove that a quadtree,
constructed in a specific way, can be used to guide the parallel refinement, so that
the points, simultaneously inserted in multiple leaves, are Delaunay-independent.
Third, by experimental comparison with the well-known guaranteed quality sequen-
tial meshing software, we show that our method does not lead to overrefinement,
while matching its quality and allowing for code re-use.

1 Introduction

Parallel 2D mesh generation is still important for some 3D simulations like direct
numerical simulations of turbulence in cylinder flows with very large Reynolds num-
bers [8] and coastal ocean modeling for predicting storm surge and beach erosion in

This work was supported by NSF grants: EIA-9972853, EIA-0203974, and ACI-
0312980

506 Andrey N. Chernikov and Nikos P. Chrisochoides

real-time [23]. In both cases, 2D mesh generation is taking place in the xy-plane and
it is replicated in the z-direction in the case of cylinder flows or using bathemetric
contours in the case of coastal ocean modeling applications. With the increase of
the Reynolds number, the size of the mesh grows in the order of Re9/4 [14], which
motivates the use of parallel mesh generation algorithms. At the same time, the
size of the mesh can be somewhat reduced by employing parallel nonuniform mesh
refinement, which is the topic of this paper.

Nave, Chrisochoides, and Chew [17] presented a practical provably-good paral-
lel mesh refinement algorithm for polyhedral domains. The approach in [17] allows
rollbacks to occur whenever the simultaneously inserted points can potentially lead
to an invalid mesh. It is also labor intensive since it requires changing the sequential
meshing kernel in order to accommodate for rollbacks and overlapping of computa-
tion with communication. In the present paper, we develop a theoretical framework
which allows us to guarantee a priori that concurrently inserted points are Delaunay-
independent. The elimination of rollbacks leads to two major benefits: savings in the
computation time and the possibility to leverage existing sequential Delaunay mesh-
ing libraries like the Triangle [19].

Linardakis and Chrisochoides [15] described a Parallel Domain Decoupling De-
launay method for two-dimensional domains, which is capable of leveraging serial
meshing codes. However, it can produce only uniform meshes and is based on the
Medial Axis Transform, which is very expensive and difficult to compute for three-
dimensional geometries. The approach developed in this paper allows to construct
nonuniform meshes and is domain decomposition independent, i.e., it does not re-
quire an explicit construction of internal boundaries between the subdomains which
will be forced into the final mesh.

Blelloch, Hardwick, Miller, and Talmor [2] describe a divide-and-conquer projection-
based algorithm for constructing Delaunay triangulations of pre-defined point sets
in parallel. The work by Kadow and Walkington [13, 11, 12] extended [3, 2] for
parallel mesh generation and further eliminated the sequential step for constructing
an initial mesh, however, all potential conflicts among concurrently inserted points
are resolved sequentially by a dedicated processor [12].

Edelsbrunner and Guoy [9] define the points x and y as independent if the
closures of their prestars (or cavities [10]) are disjoint. The approach in [9] does not
provide a way to avoid computing the cavities and their intersections for all candidate
points, which is very expensive. Spielman, Teng, and Üngör [21] presented the first
theoretical analysis of the complexity of parallel Delaunay refinement algorithms.
In [22] the authors developed a more practical algorithm.

In [6] we presented a theoretical framework and the experimental evaluation of
a parallel algorithm for constructing uniform guaranteed quality Delaunay meshes.
We proved a sufficient condition of Delaunay-independence, which is based on a
relation of the distance between points and the global circumradius upper bound,
and which can be verified very efficiently. We also showed that a coarse-grained
mesh decomposition can be used in order to guarantee a priori that the points in
certain regions will be Delaunay-independent. In this paper, we build upon the ideas
presented in [5] to produce non-uniform (graded) meshes. The non-trivial differences
with [6] lie in the introduction of new, local point independence conditions, and in the
dynamic construction of a quadtree with leaf size reflecting the local mesh density.

A more extensive review of parallel mesh generation methods can be found in [7].

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 507

2 Parallel Refinement Theory

In this section, we develop local Delaunay-independence conditions and show how
quadtree leaves can be used to select subsets of circumcenters for concurrent in-
sertion. We extend our previous work [6] by eliminating the use of the global cir-
cumradius upper bound and adapting the size of refinement and buffer zones to the
user-defined grading function.

2.1 Terminology and Notation

We will denote point number i as pi and the triangle with vertices pi, pj , and pk as
(pipjpk). When the vertices of a triangle are irrelevant, we will write simply r.

An edge of a triangle will be denoted as e (pipj) and a line segment connecting two
arbitrary points as L (pipj). Let us call the open disk corresponding to a triangle’s
circumcircle its circumdisk. We will use symbols ((pipjpk)), ((pipjpk)),
and r ((pipjpk)) to represent the circumdisk, circumcenter, and circumradius of

(pipjpk), respectively.
The input to a planar triangular mesh generation algorithm includes a descrip-

tion of domain Ω ⊂ R2, which is permitted to contain holes or have more than
one connected component. We will use a Planar Straight Line Graph (PSLG) [19]
to delimit Ω from the rest of the plane. Each segment in the PSLG is considered
constrained and must appear (possibly as a union of smaller segments) in the final
mesh.

The applications that use Delaunay meshes often impose two constraints on the
quality of mesh elements: an upper bound on the circumradius-to-shortest edge ratio
(which is equivalent to a lower bound on a minimal angle [16, 20]) and an upper
bound on the element area. The former is usually fixed and given by a constant
value ρ̄, while the latter can vary and be controlled by some user-defined grading
function Δ(x, y) : R2 → R1. As a special case, the grading function can also be
constant: Δ(x, y) = Δ̄.

Typically, a mesh generation procedure starts with constructing an initial mesh,
which conforms to the input vertices and segments, and then refines this mesh
until the constraints are met. In this paper, we focus on parallelizing the Delaunay
refinement stage, which is usually the most memory- and computation-expensive.
The general idea of Delaunay refinement is to insert points in the circumcenters of
triangles that violate the required bounds, until there are no such triangles left. We
will extensively use the notion of cavity [10] which is the set of triangles in the mesh
whose circumdisks include a given point pi. We will denote C (pi) to be the cavity
of pi and ∂C (pi) to be the set of edges which belong to only one triangle in C (pi),
i.e., external edges.

For our analysis, we will use the Bowyer-Watson (B-W) point insertion algo-
rithm [4, 24], which can be written as

V ← V ∪ {pi},
T ← T \ C (pi) ∪ { (pipjpk) | e (pjpk) ∈ ∂C (pi)},

(1)

where M = (V, T) and M = (V , T) represent the mesh before and after the
insertion of pi, respectively. The set of newly created triangles forms a ball [10] of

508 Andrey N. Chernikov and Nikos P. Chrisochoides

point pi (denoted B (pi)), which is the set of triangles in the mesh that have pi as a
vertex.

Sequential Delaunay algorithms treat constrained segments differently from tri-
angle edges [20, 18]. A vertex p is said to encroach upon a segment s, if it lies within
the open diametral disk of s [18]. When a new point is about to be inserted and it
happens to encroach upon a constrained segment s, another point is inserted in the
middle of s instead [18], and a cavity of the segment’s midpoint is constructed and
triangulated as before.

We will use the terms triangulation and mesh interchangeably, depending on the
context.

2.2 Delaunay-independent Points

p
9

p

p

pp

p2 4

5

7

p
1

6

p
3

p
8

p
10

p

p

pp

p2 4

5

7

p
1

6

p
3

p
8

(a) (b)

Fig. 1. (a) If p3p6p7 ∈ C (p8) ∩ C (p9), then concurrent insertion of p8 and p9

yields a non-conformal mesh. Solid lines represent edges of the initial triangula-
tion, and dashed lines represent edges created by the insertion of p8 and p9. Note
that the intersection of edges p8p6 and p9p7 creates a non-conformity. (b) If edge
p3p6 is shared by C (p8) = { p1p2p7, p2p3p7, p3p6p7} and C (p10) = { p3p5p6,

p3p4p5}, the new triangle p3p10p6 can have point p8 inside its circumdisk, thus,
violating the Delaunay property.

We expect our parallel Delaunay refinement algorithm to insert multiple cir-
cumcenters concurrently in such a way that at every iteration the mesh will be both
conformal (i.e., simplicial) and Delaunay. Figure 1 illustrates how the concurrently
inserted points can violate one of these conditions.

i jDefinition 1 (Delaunay-independence). Points p and p are Delaunay-independent
with respect to mesh M = (V, T) if their concurrent insertion yields the confor-
mal Delaunay mesh M = (V ∪ {pi, pj}, T). Otherwise, pi and pj are Delaunay-
conflicting.

Suppose point pi encroaches upon a constrained segment si. Then pi will not be
inserted, and the midpoint pi of si will be inserted instead (similarly for pj).

Definition 2 (Strong Delaunay-independence). Points pi and pj are strongly
Delaunay-independent with respect to mesh M = (V, T) iff any pair of points in
{pi, pi} × {pj , pj} are Delaunay-independent with respect to M.

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 509

2.3 Local Delaunay-Independence Conditions

Lemma 1 (Delaunay-independence criterion I). Points pi and pj are Delaunay-
independent iff

C (pi) ∩ C (pj) = ∅, (2)

and
∀e (pmpn) ∈ ∂C (pi) ∩ ∂C (pj) : pi /∈ ((pjpmpn)) . (3)

Proof. First, M = (V ∪ {pi, pj}, T) is conformal iff (2) holds. Indeed, if (2) holds,
then considering (1), the concurrent retriangulation of C (pi) and C (pj) will not yield
overlapping triangles, and the mesh will be conformal. Conversely, if (2) does not
hold, the newly created edges will intersect as shown in Fig. 1a, and M will not be
conformal.

Now, we will show that M is Delaunay iff (3) holds. The Delaunay Lemma [10]
states that iff the empty circumdisk criterion holds for every pair of adjacent trian-
gles, then the triangulation is globally Delaunay. Disregarding the symmetric cases,
there are three types of pairs of adjacent triangles r and s, where r ∈ B (pi),
that will be affected: (i) s ∈ B (pi), (ii) s ∈ T \ B (pi) \ B (pj), and (iii)

s ∈ B (pj). The sequential Delaunay refinement algorithm guarantees that r

and s will be locally Delaunay in the first two cases. In addition, condition (3)
ensures that they will be locally Delaunay in the third case. Therefore, the mesh
will be globally Delaunay. Conversely, if (3) does not hold, triangles (pipmpn)
and (pjpmpn) will not be locally Delaunay, and the mesh will not be globally
Delaunay.

Corollary 1 (Sufficient condition of Delaunay-independence I [6]). From
Lemma 1 it follows that if (2) holds and ∂C (pi) ∩ ∂C (pj) = ∅, then pi and pj are
Delaunay-independent.

Lemma 2 (Delaunay-independence criterion II). Points pi and pj are Delaunay-
independent with respect to mesh M = (V, T) iff the edge e (pipj) does not appear
in M = (V ∪ {pi, pj}, T).

Proof. To prove the “if” part, let us recall that an edge e exists in a Delaunay tri-
angulation iff there is an empty open disk whose circle passes through the endpoints
of e [20]. This means that, in case e (pipj) is not in M, there is no empty open disk
whose circle passes through pi and pj . This observation has two consequences:

(i) There is no open disk (triangle circumdisk, as a special case), empty of the
existing mesh vertices, that includes both pi and pj ; therefore, condition (2)
holds.

(ii) There is no empty open disk, which includes pi, whose circle passes through pj .
As a special case, there is no such disk whose circle also passes through pm and
pn; consequently, condition (3) holds.

Thus, pi and pj are Delaunay-independent by Lemma 1.
In order to show that the “only if” part of the Lemma holds, we assume that pi

and pj are Delaunay-independent. Then, by Lemma 1, conditions (2) and (3) hold.
Consider Figure 2a. An edge e of a triangulation is either locally Delaunay or is
flippable, in which case the edge created by flipping e is locally Delaunay [20]. Since
the edge e (pmpn) is locally Delaunay, the edge e (pipj) is not locally Delaunay, and,
hence, cannot exist in M .

510 Andrey N. Chernikov and Nikos P. Chrisochoides

p
i

p

p
m

n

j
p

q

p
i

p
l

p
k

p

p
m

n

j
p

(a) (b)

Fig. 2. (a) Either e (pipj) or e (pmpn) is locally Delaunay. (b) ((pjpmpn))
cannot include pi and not include q.

Corollary 2 (Sufficient condition of Delaunay-independence II). Lemma 2
implies that if pi and pj are not visible to each other (i.e. the edge e (pipj) cannot
exist in a triangulation of Ω, e.g. it would cross a constrained segment), then pi and
pj are Delaunay-independent.

Lemma 3 (Sufficient condition of Delaunay-independence III). Points pi

and pj are Delaunay-independent if there exists a point q ∈ L (pipj) such that

∀ s ∈ T : q ∈ (s) =⇒ r (s)
1

2
pi − pj . (4)

Proof. First, condition (4) implies that C (pi)∩C (pj) = ∅. Indeed, if there had been
a triangle circumdisk that included pi and pj , then this circumdisk would have also
included q and had radius greater than 1

2
pi − pj , which contradicts (4).

Now, there are two possibilities:

(i) If ∂C (pi) ∩ ∂C (pj) = ∅, then, by Corollary 1, pi and pj are Delaunay-
independent.

(ii) Otherwise, let ∂C (pi)∩∂C (pj) = ∅ and e (pmpn) be an arbitrary edge in ∂C (pi)∩
∂C (pj) as depicted on Fig. 2b. ((pjpmpn)) cannot include pi; otherwise,
it would have also included q and had radius greater than 1

2
pi − pj , which

contradicts (4). Hence, by Lemma 1, pi and pj are Delaunay-independent.

2.4 Quadtree Construction

Definition 3 (Quadtree node). Let a quadtree node be an axis-aligned square
S ⊂ R2. A quadtree node can be either divided into four smaller nodes of equal size
or not divided (in this case it is a leaf).

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 511

We will denote the length of the side of square S as (S).

Definition 4 (α-neighborhood). Let the α-neighborhood Nα (Si) (α ∈ {Left,
Right, Top, Bottom}) of quadtree leaf Si be the set of quadtree leaves that share
a side with Si and are located in the α direction of Si. For example, in Fig. 3,
Sk ∈ NTop (Si) and Sl ∈ NRight (Si).

Definition 5 (Orthogonal directions). Let the orthogonal directions ORT (α) of
direction α be

ORT (α) =
{Left, Right} if α ∈ {Top, Bottom},
{Top, Bottom} if α ∈ {Left, Right}.

Definition 6 (Buffer zone). Let the set of leaves

BUF (Si) =
α

Nα (Si) ∪ {Sm ∈ NORT(α) (Sk) | Sk ∈
α

Nα (Si)}

be called a buffer zone of leaf Si with respect to mesh M iff

∀Sn ∈ BUF (Si) , ∀ s ∈ T : (s) ∩ Sn = ∅ =⇒ r (s) <
1

4
(Sn) . (5)

Equation (5) is the criterion for the dynamic construction of the quadtree. Start-
ing with the root node which covers the entire domain, each node of the quadtree
is split into four smaller nodes as soon as all triangles, whose circumdisks intersect
this node, have circumradii smaller than one eighth of its side length.

Si

SS

Sl

k
m

Fig. 3. An example of BUF (Si).

Definition 7 (Delaunay-separated regions). Let two regions Ri ⊂ R2 and Rj ⊂
R2 be called Delaunay-separated with respect to mesh M iff arbitrary points pi ∈ Ri

and pj ∈ Rj are strongly Delaunay-independent.

512 Andrey N. Chernikov and Nikos P. Chrisochoides

p
i

Si Sj

p
i
’

Sk1

Sk2

Sk

p
j

’p
j

p

p
p

p
p

pl

m
n

r
s

t

Fig. 4. Splitting constrained segments and strong Delaunay-independence.

Lemma 4 (Sufficient condition of square Delaunay-separateness). If Si and
Sj are quadtree leaves and Sj /∈ BUF (Si), then Si and Sj are Delaunay-separated.

Proof. First, for an arbitrary pair of points pi ∈ Si and pj ∈ Sj /∈ BUF (Si), we
will prove that pi and pj are Delaunay-independent. Then we will extend the proof
to show that any pair of points from {pi, pi} × {pj , pj} are Delaunay-independent,
which will imply that pi and pj are strongly Delaunay-independent; hence, Si and
Sj are Delaunay-separated.

By enumerating all possible configurations of leaves in BUF (Si) and grouping
similar cases, w.l.o.g. all arrangements can be accounted for using the following
argument.

Suppose L (pipj) intersects the common boundary of Si and Sk ∈ NTop (Si) ⊂
BUF (Si) (Fig. 5).

(i) If L (pipj) intersects the upper boundary of Sk (Fig. 5a), then, from (5) and
the fact that (Sk) < pi − pj , any point q ∈ L (pipj) ∩ Sk will satisfy (4).
Therefore, by Lemma 3, pi and pj are Delaunay-independent.

(ii) Otherwise, let L (pipj) intersect the left boundary of Sk and Sm ∈ NLeft (Sk) ⊂
BUF (Si) be the leaf adjacent to this boundary at the point of intersection.
L (pipj) can intersect either the upper boundary of Sm (Fig. 5b) or the left
boundary of Sm (Fig. 5c). In both cases, (Sm) < pi − pj , any point
q ∈ L (pipj) ∩ Sm will satisfy (4), and pi and pj are Delaunay-independent
by Lemma 3.

p
j

q

p
i

Sm Sk

Si

p
j

q

p
i

Sm Sk

Si

p
j

q

p
i

Sm Sk

Si

(a) (b) (c)

Fig. 5. Some possible positions of points pi and pj relative to BUF (Si).

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 513

Now, suppose pi and pj encroach upon constrained edges e (plpm) and e (prps),
respectively (Fig. 4). Then the midpoints pi and pj of e (plpm) and e (prps) will be
inserted instead. If pi and pj lie in the same quadtree leaves as pi and pj , then they
can be proven Delaunay-independent using the argument above.

Let us analyze the worst case, i.e. pi, pj ∈ Sk ∈ BUF (Si). Since the diame-
tral disk of an edge has the smallest radius among all disks whose circle passes
through the endpoints of an edge, then r (e (plpm)) r ((plpmpn)) < 1

4
(Sk) and

r (e (prps)) r ((prpspt)) < 1
4

(Sk). Therefore, pi − pj > 1
2

(Sk). By con-
structing imaginary buffer squares Sk1 and Sk2 as shown on Fig. 4, we can still
satisfy condition (4), which guarantees that pi and pj are Delaunay-independent by
Lemma 3.

3 Experiments

Figures 6 and 7 compare the meshes produced by our implementation and the Tri-
angle library [19] for a pipe cross-section and a key. Figure 8 also shows the initial
geometry and the quadtree produced by our algorithm for the cylinder flow prob-
lem, which is similar to the model used in [8]. For all of the quadtree nodes, mesh
refinement and node subdivision routines were applied concurrently while preserv-
ing the required buffer zones, until the quality constraints were met. The specified
grading functions are used as follows. If (xi, yi) is the centroid of the triangle i,
then the area of i has to be less than Δ(xi, yi). In all experiments we used the
same minimal angle bound of 20◦. These tests indicate that while maintaining the
required quality of the elements, the number of triangles produced by our method
is close, and sometimes is even smaller, than produced by the Triangle [19].

4 Conclusions

We presented a theoretical framework for developing parallel Delaunay meshing
codes, which allows to control the size of the elements with a user-defined grading
function. We eliminated such disadvantages of the previously proposed methods as
the necessity to maintain a cavity (conflict) graph, the rollbacks, the requirement to
solve a difficult domain decomposition problem, and the centralized sequential res-
olution of potential conflicts. Our theory leverages the quality guarantees of the ex-
isting sequential Delaunay refinement algorithms. The experimental results confirm
that the parallel algorithm produces meshes with the same quality as the sequential
Delaunay refinement algorithm and does not lead to overrefinement.

We are currently working on the extension of the proposed approach to three
dimensions. While the quadtree immediately generalizes to the octree, the properties
of 3D cavities require further study.

5 Acknowledgments

We thank the anonymous reviewers for helpful comments.

514 Andrey N. Chernikov and Nikos P. Chrisochoides

(a)

(b)

Fig. 6. Pipe cross-section model, Δ(x, y) = 0.4 (x− 200)2 + (y − 200)2 + 1. (a)
Our parallel refinement algorithm, 4166 triangles. (b) The Triangle [19], 4126 tri-
angles.

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 515

(a) (b)

Fig. 7. Jonathan Shewchuk’s key model, Δ(x, y) = 0.02|y − 46| + 0.1. (a) Our
parallel refinement algorithm, 5411 triangles. (b) The Triangle [19], 5723 triangles.

−20
−20

0

0

y

x

20

50

(a) (b)

Fig. 8. The cylinder flow model. Δ(x, y) = 1.2 · 10−3 if ((x 0)∧ (y < 5))∨ ((x <
0)∧ (x2 + y2) < 5); Δ(x, y) = 10−2, otherwise. Our parallel refinement algorithm
produced 1044756 triangles, and the Triangle [19] produced 1051324 triangles. (a)
The input model. (b) The final quadtree. The complete triangulation is not drawn.

516 Andrey N. Chernikov and Nikos P. Chrisochoides

[2] G. E. Blelloch, J. Hardwick, G. L. Miller, and D. Talmor. Design and imple-
mentation of a practical parallel Delaunay algorithm. Algorithmica, 24:243–269,
1999.

[3] G. E. Blelloch, G. L. Miller, and D. Talmor. Developing a practical projection-
based parallel Delaunay algorithm. In 12th Annual Symposium on Computa-
tional Geometry, pages 186–195, 1996.

[4] A. Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–166,
1981.

[5] A. N. Chernikov and N. P. Chrisochoides. Parallel guaranteed quality planar
Delaunay mesh generation by concurrent point insertion. In 14th Annual Fall
Workshop on Computational Geometry, pages 55–56. MIT, Nov. 2004.

[6] A. N. Chernikov and N. P. Chrisochoides. Practical and efficient point inser-
tion scheduling method for parallel guaranteed quality Delaunay refinement.
In Proceedings of the 18th annual international conference on Supercomputing,
pages 48–57. ACM Press, 2004.

[7] N. P. Chrisochoides. A survey of parallel mesh generation methods. Technical
Report BrownSC-2005-09, Brown University, 2005. To appear in Numerical So-
lution of Partial Differential Equations on Parallel Computers (eds. Are Magnus
Bruaset, Petter Bjorstad, Aslak Tveito).

[8] S. Dong, D. Lucor, and G. E. Karniadakis. Flow past a stationary and moving
cylinder: DNS at Re=10,000. In 2004 Users Group Conference (DOD UGC’04),
pages 88–95, 2004.

[9] H. Edelsbrunner and D. Guoy. Sink-insertion for mesh improvement. In Pro-
ceedings of the Seventeenth Annual Symposium on Computational Geometry,
pages 115–123. ACM Press, 2001.

[10] P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing. Ap-
plication to Finite Elements. HERMES, 1998.

[11] C. Kadow. Adaptive dynamic projection-based partitioning for parallel De-
launay mesh generation algorithms. In SIAM Workshop on Combinatorial Sci-
entific Computing, Feb. 2004.

[12] C. Kadow. Parallel Delaunay Refinement Mesh Generation. PhD thesis,
Carnegie Mellon University, 2004.

[13] C. Kadow and N. Walkington. Design of a projection-based par-
allel Delaunay mesh generation and refinement algorithm. In Fourth
Symposium on Trends in Unstructured Mesh Generation, July 2003.
http://www.andrew.cmu.edu/user/sowen/usnccm03/agenda.html.

[14] G. Karnriadakis and S. Orszag. Nodes, modes, and flow codes. Physics
Today, 46:34–42, 1993.

[15] L. Linardakis and N. Chrisochoides. Parallel domain decoupling Delaunay
method. SIAM Journal on Scientific Computing, in print, accepted Nov. 2004.

[16] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay based
numerical method for three dimensions: Generation, formulation, and partition.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pages 683–692. ACM Press, May 1995.

[17] D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed–quality parallel De-
launay refinement for restricted polyhedral domains. Computational Geometry:
Theory and Applications, 28:191–215, 2004.

[18] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18(3):548–585, 1995.

Parallel 2D Graded Guaranteed Quality Delaunay Mesh Refinement 517

[19] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Proceedings of the First workshop on Applied Com-
putational Geometry, pages 123–133, Philadelphia, PA, 1996.

[20] J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis,
Carnegie Mellon University, 1997.

[21] D. A. Spielman, S.-H. Teng, and A. Üngör. Parallel Delaunay refinement:
Algorithms and analyses. In Proceedings of the Eleventh International Meshing
Roundtable, pages 205–217, 2001.

[22] D. A. Spielman, S.-H. Teng, and A. Üngör. Time complexity of practical
parallel Steiner point insertion algorithms. In Proceedings of the sixteenth an-
nual ACM symposium on Parallelism in algorithms and architectures, pages
267–268. ACM Press, 2004.

[23] R. A. Walters. Coastal ocean models: Two useful finite element methods.
Recent Developments in Physical Oceanographic Modelling: Part II, 25:775–
793, 2005.

[24] D. F. Watson. Computing the n-dimensional Delaunay tesselation with ap-
plication to Voronoi polytopes. Computer Journal, 24:167–172, 1981.

